Abstract
Defining the scale of connectivity, or exchange, among marine populations and determining the factors driving this exchange are pivotal to our understanding of the population dynamics, genetic structure, and biogeography of many coastal species. Using a high-resolution biophysical model for the Caribbean region, we report that typical larval dispersal distances of ecologically relevant magnitudes are on the scale of only 10 to 100 kilometers for a variety of reef fish species. We also show the importance of the early onset of active larval movement mediating the dispersal potential. In addition to self-recruitment, larval import from outside the local area is required to sustain most populations, although these population subsidies are very limited in particular systems. The results reveal distinct regions of population isolation based on larval dispersal that also correspond to genetic and morphological clines observed across a range of marine organisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.