Abstract

In social insect colonies, individuals are physically independent but functionally integrated by interaction networks which provide a foundation for communication and drive the emergence of collective behaviors, including nest architecture, division of labor, and potentially also the social regulation of metabolic rates. To investigate the relationship between interactions, metabolism, and colony size, we varied group size for harvester ant colonies (Pogonomyrmex californicus) and assessed their communication networks based on direct antennal contacts and compared these results with proximity networks and a random movement simulation. We found support for the hypothesis of social regulation; individuals did not interact with each other randomly but exhibited restraint. Connectivity scaled hypometrically with colony size, per-capita interaction rate was scale-invariant, and smaller colonies exhibited higher measures of closeness centrality and edge density, correlating with higher per-capita metabolic rates. Although the immediate energetic cost for two ants to interact is insignificant, the downstream effects of receiving and integrating social information can have metabolic consequences. Our results indicate that individuals in larger colonies are relatively more insulated from each other, a factor that may reduce or filter noisy stimuli and contribute to the hypometric scaling of their metabolic rates, and perhaps more generally, the evolution of larger colony sizes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call