Abstract

In this study, natural convection cooling phenomena in storage vaults for spent nuclear fuel were examined. The results revealed a relationship between the geometric length and heat flux of spent fuel cylinders. Such a correlation would be useful in dimensionally scaled storage vaults for experimental investigations of thermal and fluid flow properties. The relationship was applied to five scaled storage vaults, and the resulting thermal and fluid flow characteristics were investigated and compared with those of a full-scale storage vault. The thermal characteristics of the original and scaled storage vaults were in good agreement. The dimensionless temperature, dimensionless resident time, Euler number, and Richardson number were used to compare the behavior of structures with different dimensions, and the obtained data were in agreement within 5.1%. A 1/4-scale storage vault was constructed using the scaling methodology, and the temperature distribution was experimentally measured. The temperature distributions of the measured and simulated structures were found to be in good agreement, demonstrating that the proposed approach is effective for designing scaled-down storage vaults for experimental analyses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.