Abstract

In a previous work, we showed that the 2D, extended-source internal DLA (IDLA) of Levine and Peres is δ3/5-close to its scaling limit, if δ is the lattice size. In this paper, we investigate the scaling limits of the fluctuations themselves. Namely, we show that two naturally defined error functions, which measure the “lateness” of lattice points at one time and at all times, respectively, converge to geometry-dependent Gaussian random fields. We use these results to calculate point-correlation functions associated with the fluctuations of the flow. Along the way, we demonstrate similar δ3/5 bounds on the fluctuations of the related divisible sandpile model of Levine and Peres, and we generalize the results of our previous work to a larger class of extended sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call