Abstract

Some general properties of perturbed (rational) CFT in the background metric of symmetric 2D sphere of radius $R$ are discussed, including conformal perturbation theory for the partition function and the large $R$ asymptotic. The truncated conformal space scheme is adopted to treat numerically perturbed rational CFT's in the spherical background. Numerical results obtained for the scaling Lee-Yang model lead to the conclusion that the partition function is an entire function of the coupling constant. Exploiting this analytic structure we are able to describe rather precisely the ``experimental'' truncated space data, including even the large $R$ behavior, starting only with the CFT information and few first terms of conformal perturbation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.