Abstract

Experimental results for passive tracer dispersion in the turbulent surface layer under stable conditions are presented. In this case, the dispersion of tracer particles is determined by the interplay of three mechanisms: relative dispersion (celebrated Richardson's mechanism), shear dispersion (particle separation due to variation of the mean velocity field) and specific surface-layer dispersion (induced by the gradient of the energy dissipation rate in the turbulent surface layer). The latter mechanism results in the rather slow (ballistic) law for the mean squared particle separation. Based on a simplified Langevin equation for particle separation we found that the ballistic regime always dominates at large times. This conclusion is supported by our extensive atmospheric observations. Exit-time statistics are derived from the experimental data set and show a reasonable match with the simple dimensional asymptotes for different mechanisms of tracer dispersion, as well as predictions of the multifractal model and experimental data from other sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call