Abstract

In this study, we analyze the band structure, the state characterization, and electronic transport of monolayer black phosphorus (phosphorene) zigzag nanoribbons (zPNRs) and armchair nanoribbons (aPNRs), using five-parameter tight-binding (TB) approximation. In zPNRs, the ratio of the two dominant hopping parameters indicates the possibility of a relativistic dispersion relation and the existence of a pair of separate quasi-flat bands at the Fermi level. Moreover, the corresponding states are edge localized if their bands are well separated from the valence and conduction bands. We also investigated the scaling laws of the band gaps versus ribbon widths for the armchair and zigzag phosphorene nanoribbons. In aPNRs, the transverse electric field along the ribbon width enhances the band gap closure by shifting the energy of the valence and conduction band edge states. For zPNRs, a gap occurs at the middle of the relatively degenerate quasi-flat bands; thus, these ribbons are a promising candidate for future field-effect transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.