Abstract

AbstractAccurately modeling the evolution of the electron radiation belts within the plasmasphere represents both an imperative goal for space weather forecasting and a great challenge. Combining previously developed approximate analytical expressions of electron lifetimes with recent statistical models of plasma density, ULF, whistler‐mode, and electromagnetic ion cyclotron waves, we demonstrate that geomagnetic activity and plasma density actually govern the inner structure of the radiation belts through several simple analytical scaling laws when Kp < 3. Many of the observed characteristic features of electron fluxes in the energy versus L shell parameter space are straightforwardly explained. In particular, the upper energy limit of significant electron fluxes at L = 1.5 is estimated as ∼1 MeV in agreement with recent satellite observations. This approximate analytical model represents a very simple and powerful tool for exploring and better understanding the complex variations of the inner structure of the radiation belts with geomagnetic activity during relatively quiet times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.