Abstract
Significant attention in the literature is directed toward the development of scaling relations that relate the properties of nanoporous metals to bulk materials in order to help in their design. Although nanoporous gold has been under extensive study to develop the proper scaling relations, the literature still lacks a specific model that predicts its properties based on a combination of surface parameters, ligament size, and relative density. This work is part of the ongoing trials to introduce such scaling relations. Therefore, utilizing literature-reported results, the authors are proposing scaling relations that account for the coupling effect of surface area to solid volume ratio, ligament size, and relative density to predict the elastic modulus, yield stress, and ultimate stress under uniaxial loading. Moreover, a comparison between the proposed model and existing scaling laws in the literature is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.