Abstract

We examine maximum vertex coloring of random geometric graphs, in an arbitrary but fixed dimension, with a constant number of colors. Since this problem is neither scale-invariant nor smooth, the usual methodology to obtain limit laws cannot be applied. We therefore leverage different concepts based on subadditivity to establish convergence laws for the maximum number of vertices that can be colored. For the constants that appear in these results, we provide the exact value in dimension one, and upper and lower bounds in higher dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call