Abstract

Multiple scattering of light has been the main limitation of the maximum atomic density achievable in magneto-optical traps (MOTs). We present a detailed experimental investigation of the size and density scaling laws for large MOTs with up to N=1010 atoms, larger than those usually studied in detail. Most of our observations can be explained with previous models and only a few regimes show unexplained deviations. We also propose a new repulsion mechanism, based on the rescattered repumper photons that might limit the atomic density of atoms when the optical thickness for repumper light becomes important, adding an additional ingredient in the complexity of large MOTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.