Abstract

Scaling laws for free turbulent gas jets and diesel-like sprays are deduced and experimentally validated. The analysis is based on basic conservation equations and experimental evidence. As a new contribution, the effect of the Schmidt number on the scaling laws is analyzed and included, which leads to a more general set of normalized parameters. By analyzing the scaling laws, it is possible to obtain a clear comprehension of gas-jet or diesel-spray behavior, as well as an understanding of the relationship between input and output parameters. Two new parameters are introduced that characterize mass and momentum transfer in the radial direction of the gas jet or diesel spray, thus providing valuable information about the mixing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.