Abstract
The integration of electromechanical actuation systems for aerospace applications requires additional thermal stress considerations during the preliminary design, which were not necessary within the hydraulic technology. The favored models during this design phase are simple, continuous and explicit mathematical expressions to enable easy analytical manipulations or implementations in worksheets or optimization loops. The paper shows how such models can be obtained for the desired applications, illustrating the example of a Limited Angle Torque Motor (LATM) with different cooling strategies. The used method for gathering the models is a regression process on data obtained by finite element simulations. The originality of the method stands in the physical insight of the regression function which is based on scaling laws and dimensional analysis. An example of preliminary design of a LATM illustrates the use of the obtained models for the comparison of two possible architectures intended to minimize the mass of the actuator by implementing different cooling strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.