Abstract

Multiplexed, real-time and low cost detection of bioanalytes can be achieved by building integrated biosensor microarrays. The lack of design guidelines for this kind of biochip leads to inferior results compared to individual biosensors. In this paper, we thoroughly study the impact of considering several pixels per spot on the performances of integrated biosensor microarrays. By taking into account the biological shot noise and electrical characteristics of the transducer, we theoretically calculate how dividing each spot into several pixels improves the limit of detection and the resolution of the overall biosensor microarray without degrading the signal-to-noise ratio. More particularly, we show that the improvement of the limit of detection depends on the individual biosensor performance while the resolution is enhanced proportionally to the square root of number of pixels per spot. Performance trade-offs, CMOS compatibility and numerical results for optical, field-effect and capacitive biosensor microarrays having multiple pixels per spot are finally established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.