Abstract

Abstract Recently, two dimensional InSe attracts great attentions as potential hydrogen production photocatalysts. Here, comprehensive investigations on the hydrogen evolution reaction activity of InSe monolayer with 3d transition metal doping and biaxial strain were performed based on the density functional theory. Transition metal dopants significantly increase the bonding strength between H and Se, and then adjust the hydrogen adsorption free energy to 0.02 eV by Zn doping. The enhanced hydrogen evolution reaction activity results from less electron occupying H 1s-Se 4pz anti-bonding states, which is well correlated with the pz band center level. Importantly, the universal scalling law was proposed to descript the evolution of hydrogen adsorption free energy including both doping and strain effects. Moreover, with appropriate band alignment, optical absorption, and carriers separation ability, Zn doped InSe monolayer is considered as a promising candidate of visible-light photocatalyst for hydrogen production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call