Abstract

Improved results can often be obtained from second-order Rayleigh-Schrodinger perturbation calculations of electron correlation energies using large basis sets by introducing a scaling factor in the zero-order Hamiltonian. The scaling parameter may be determined from full third-order calculations using a smaller basis set. This scaling procedure can be applied in a systematic fashion by employing a sequence of even-tempered basis sets. Calculations illustrating this approach for the beryllium atom and the neon atom are presented. The scaling procedure is also employed in conjunction with a universal systematic sequence of basis functions. Calculations illustrating this Correlation energy — Mang-body perturbation theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.