Abstract

Using the electrostatic approximation, we analyze electromagnetic fields scattered by sharp conical metal tips, which are illuminated with light polarized along the tip axis. We establish scaling relations for the scattered field amplitude and phase, and verify the validity with numerical simulations. Analytic expressions for the wavelength at which the scattered field near the tip changes its direction and for the field decay near the tip extremity are obtained, relating these characteristics to the cone angle and metal permittivity. The results obtained have important implications for various tip-enhanced phenomena, ranging from Raman and scattering near-field imaging to photoemission spectroscopy and nano-optical trapping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.