Abstract
Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) approach that exhibits favourable exploration properties in high-dimensional models such as neural networks. Unfortunately, HMC has limited use in large-data regimes and little work has explored suitable approaches that aim to preserve the entire Hamiltonian. In our work, we introduce a new symmetric integration scheme for split HMC that does not rely on stochastic gradients. We show that our new formulation is more efficient than previous approaches and is easy to implement with a single GPU. As a result, we are able to perform full HMC over common deep learning architectures using entire data sets. In addition, when we compare with stochastic gradient MCMC, we show that our method achieves better performance in both accuracy and uncertainty quantification. Our approach demonstrates HMC as a feasible option when considering inference schemes for large-scale machine learning problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.