Abstract

Gyrokinetic simulations lead to huge computational needs. Up to now, the semi- Lagrangian code Gysela performed large simulations using a few thousands cores (8k cores typically). Simulation with finer resolutions and with kinetic electrons are expected to increase those needs by a huge factor, providing a good example of applications requiring Exascale machines. This paper presents our work to improve Gysela in order to target an architecture that presents one possible way towards Exascale: the Blue Gene/Q. After analyzing the limitations of the code on this architecture, we have implemented three kinds of improvement: computational performance improvements, memory consumption improvements and disk i/o improvements. As a result, we show that the code now scales beyond 32k cores with much improved performances. This will make it possible to target the most powerful machines available and thus handle much larger physical cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.