Abstract

The current and potential applications of bioconvection renewed drive for theoretical research on synthesis and process control in biofuel cells and bioreactors. Thus, this work devoted to solving the problem of free convection in micropolar boundary layer fluid flow and heat transfer past a vertical flat stretching plate within a porous medium. Scaling group of transformation was performed to achieve the appropriate similarity solutions, which was later applied to modify the governing boundary layer system to a nonlinear ordinary differential equations system. The Runge–Kutta method in association with the shooting technique in the Maple software exercised to attain the numerical solutions. There is a strong dependence of momentum transportation on the increment of the Darcy number, the suction/injection parameter and the Grashof number, respectively. The temperature distribution within the thermal boundary layer aided by augmenting the magnitude of the microrotation density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.