Abstract

The isotropic-dispersion finite-difference time domain (ID-FDTD) scheme is modified for a dispersive medium. The proposed ID-FDTD scheme is based on the ADE method. In this correspondence, three typical dispersive media are considered: Debye, Drude, and Lorentz media, for which scaling factors are formulated. The dispersion property is then examined, and the accuracy of the proposed scheme is verified by consideration of two scattering problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.