Abstract

Over the past decade, remotely powered micro actuators have gained increased attention for biomedical and environmental remediation applications, owing to their ability to access confined regions and the nonintrusive nature of control. Recent studies focus on improving the functionality and versatility of micro actuators through the development of new fabrication and actuation techniques. However, there is a possibility that a limited understanding of the scaling impact of various physical principles governing design and control has affected the successful implementation of such devices in practical scenarios. Thus, the main focus of this review is to evaluate the most widely utilized manufacturing methods and remote actuation sources in light of various characteristics such as resolution, productivity, shape complexity, actuation speed, actuation mode, operating medium, and so on. State-of-the-art developments in each type of manufacturing and actuation are introduced and delineated. Finally, the limitations of current devices are reviewed, and the future direction to enable the full potential of this field is provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call