Abstract

This paper reports closed form solutions, based on perturbation techniques, for fully developed, both hydrodynamically and thermally, slip-flow forced convection in both parallel plate and circular microchannels subject to isothermal wall boundary condition. Scaling effects, including variable property, viscous dissipation, velocity slip, and temperature jump are studied in detail. The results are not only applicable to gaseous flow in the slip-flow regime but also can be used for no-slip liquid flow in microchannels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.