Abstract

The scaling-effect of mixture explosion is an unresolved issue in explosion science. In this work, we carry out experimental measurements of explosion characteristics using hydrogen/methane/air (H2/CH4/air) mixtures in two tubes with lengths of 1.5 m and 60 m. The explosion overpressure of the mixtures increases exponentially with hydrogen mole fractions in the small tube, as expected. In contrast, explosion overpressure increases rapidly, causing detonation when hydrogen is added to the mixtures. Comparing measurements in both tubes, the explosion overpressure exhibits a clear scaling-effect dependence on the tube size. The scaling-effect cannot be explained by the aspect ratio (AR) of the tube. The analysis of the hotspot size, which is correlated with the ignition delay time of mixtures, is the critical factor governing the scaling-effect of explosion seen in a large tube.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call