Abstract
AbstractWe study limiting behavior of rescaled size distributions that evolve by Smoluchowski's rate equations for coagulation, with rate kernel K=2, x+y or xy. We find that the dynamics naturally extend to probability distributions on the half‐line with zero and infinity appended, representing populations of clusters of zero and infinite size. The “scaling attractor” (set of subsequential limits) is compact and has a Levy‐Khintchine‐type representation that linearizes the dynamics and allows one to establish several signatures of chaos. In particular, for any given solution trajectory, there is a dense family of initial distributions (with the same initial tail) that yield scaling trajectories that shadow the given one for all time. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.