Abstract

A systematic methodology is presented to scale split-gate (SG) flash memory cells in the sub-90 nm regime within the presently known scaling constraints of flash memory. The numerical device simulation results show that the high performance sub-90 nm NOR-type SG cells can be achieved by a suitable channel and source-drain engineering. An asymmetric channel doping profile along with ultra-shallow source-drain junctions was used to achieve the target drain programming voltage (V sp ) for an efficient cell programming while keeping the cell breakdown voltage, BV > V sp , with tolerable leakage currents. The study shows that with properly optimised technology parameters, 65 nm SG-NOR flash memory can be achieved with an adequate cell read current, a tolerable programmed cell leakage current at the read condition and efficient write and erase times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call