Abstract

The study of phase transitions with critical exponents has helped to understand fundamental physical mechanisms. Dynamical systems which go to chaos via period doublings show an equivalent behavior during transitions between different dynamical regimes that can be expressed by critical exponents, known as the Huberman-Rudnick scaling law. This universal law is well studied, e.g., with respect to the Lyapunov exponents. Recurrence plots and related recurrence quantification analysis are popular tools to investigate the regime transitions in dynamical systems. However, the measures are mostly heuristically defined and lack clear theoretical justification. In this letter we link a selection of these heuristical measures with theory by numerically studying their scaling behavior when approaching a phase transition point. We find a promising similarity between the critical exponents to those of the Huberman-Rudnick scaling law, suggesting that the considered measures are able to indicate dynamical phase transition even from the theoretical point of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.