Abstract
Scaling behaviors in the precipitation time series derived from 1951 to 2009 over China are investigated by detrended fluctuation analysis (DFA) method. The results show that there exists long-term memory for the precipitation time series in some stations, where the values of the scaling exponent α are less than 0.62, implying weak persistence characteristics. The values of scaling exponent in other stations indicate random behaviors. In addition, the scaling exponent α in precipitation records varies from station to station over China. A numerical test is made to verify the significance in DFA exponents by shuffling the data records many times. We think it is significant when the values of scaling exponent before shuffled precipitation records are larger than the interval threshold for 95 % confidence level after shuffling precipitation records many times. By comparison, the daily precipitation records exhibit weak positively long-range correlation in a power law fashion mainly at the stations taking on zonal distributions in south China, upper and middle reaches of the Yellow River, northern part of northeast China. This may be related to the subtropical high. Furthermore, the values of scaling exponent which cannot pass the significance test do not show a clear distribution pattern. It seems that the stations are mainly distributed in coastal areas, southwest China, and southern part of north China. In fact, many complicated factors may affect the scaling behaviors of precipitation such as the system of the east and south Asian monsoon, the interaction between sea and land, and the big landform of the Tibetan Plateau. These results may provide a better prerequisite to long-term predictor of precipitation time series for different regions over China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.