Abstract

Recent investigations of grain growth in nanocrystalline materials have revealed a new growth mechanism: grain-rotation-induced grain coalescence. Based on a simple model employing a stochastic theory and using computer simulations, here we investigate the coarsening of a polycrystalline microstructure due solely to the grain-rotation coalescence mechanism. Our study demonstrates that this mechanism exhibits power-law growth with a universal scaling exponent. The value of this universal growth exponent is shown to depend on the assumed mechanism by which the grain rotations are accommodated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call