7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3938/jkps.58.599
Copy DOIPublication Date: Mar 15, 2011 | |
Citations: 1 |
We investigated the scaling behavior of ferroelectric (FE) hysteresis loops as a function of the applied field amplitude (E{sub 0}) in a high-quality epitaxial PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (PZT) thin film. We observed that the areas of the polarization-electric field hysteresis loops (A) followed the scaling law A {proportional_to} E{sub 0}{sup {alpha}}, with the exponent {alpha} = 0.45 {+-} 0.01. This result is in excellent agreement with the theoretical prediction of {alpha} by the two-dimensional Ising model. In addition, we found that the coercive field (E{sub C}) showed E{sub C} {proportional_to} E{sub 0}{sup {gamma}} with the exponent {gamma} = 0.28 {+-} 0.01. We attribute this relationship to the difference in the sweep rate of the field amplitude E{sub 0}. From the obtained {gamma} value, the growth dimension of FE domains is found to be about 1.68 in our epitaxial PZT thin film.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.