Abstract

A one-dimensional diagonal tight binding electronic system with correlated disorder is investigated. The correlation of the random potential is exponentially decaying with distance and its correlation length diverges as the concentration of "wrong sign" approaches to 1 or 0. The correlated random number sequence can be generated easily with a binary sequence similar to that of a one-dimensional spin glass system. The localization length (LL) and the integrated density of states (IDOS) for long chains are computed. A comparison with numerical results is made with the recently developed scaling technique results. The Coherent Potential Approximation (CPA) is also adopted to obtain scaling functions for both the LL and the IDOS. We confirmed that the scaling functions show a crossover near the band edge and establish their relation to the concentration. For concentrations near to 0 or 1 (longer correlation length case), the scaling behavior is followed only for a very limited range of the potential strengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.