Abstract

Fouling and scaling are inherent characteristics of membrane-based separation. They lead to a reduced membrane throughput. In the case of membrane distillation (MD), they can possibly result in pore wetting and irreversible failure to sustain the mass transfer interface. Most prior research on understanding fouling and scaling uses indirect measurements (flux) or ex-situ analyses methods (such as SEM and EDX), which limit the outcomes to indirect qualitative conclusions. Particularly, studying scaling tends to be more challenging due to the complexity of the experiments and the method of investigation; it is imperative to distinguish the contributions from the bulk phase and heterogeneous nucleation. In this work, we established a non-invasive, in-situ, real-time imaging experimental apparatus to study the scaling mechanism. Our experimental setup assisted us in distinguishing distinct phases of scaling during the filtration tests. We studied the scaling mechanism of various single-component systems (sodium chloride, strontium sulfate, calcium sulfate, and calcium carbonate) in vacuum MD filtration. The effect of natural organic matter and antiscalants on gypsum scaling were systematically investigated. Overall, organic fouling on the membrane surface expedited heterogeneous crystallization while decelerating crystal growth in the bulk phase. For instance, deposited humic acid (HA) on the membrane surface promoted gypsum heterogeneous nucleation on the membrane surface due to the interactions between HA carboxylic functional groups and calcium ions. The adsorption of HA on the salt crystal also decelerated crystal growth in the bulk phase. Antiscalants delayed and decelerated both crystal nucleation and crystal growth. PAA, a polycarboxylate antiscalant at 5 ppm, was found to effectively delay the onset of nucleation and crystal growth in the bulk phase, while phosphorous antiscalants at 5 ppm only delayed the onset of nucleation in the bulk phase with a negligible influence on crystal growth. Real-time, in-situ, and non-invasive monitoring shed light on the scaling mechanism and can further be used to identify mitigation strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call