Abstract

This paper examines the impact of SiGe HBT scaling on 1/f noise and phase noise of oscillators and frequency synthesizers. The increase of transistor speed with scaling is shown to significantly increase the sensitivity of oscillation frequency to 1/f noise and, thus, degrade close-in phase noise, but decrease the sensitivity of oscillation frequency to base current shot noise and base resistance thermal noises. The results show that corner offset frequency defined by the intersect of the 1/f3 and 1/f2 phase noise has little to do with the traditional 1/f corner frequency. The relative importance of individual noise sources in determining phase noise is examined as a function of technology scaling, device sizing, and oscillation frequency. The collector current shot noise and base resistance noise are shown to set the fundamental limits of phase noise reduction. A methodology to identify the maximum tolerable 1/f K factor is established and demonstrated for the HBTs used

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call