Abstract
The conditions under which depth-averaged two-dimensional (2D) hydrodynamic equations system as an initial-boundary value problem (IBVP) becomes self-similar are investigated by utilizing one-parameter Lie group of point scaling transformations. Self-similarity conditions due to the 2D k-ε turbulence model are also investigated. The self-similarity conditions for the depth-averaged 2D hydrodynamics are found for the flow variables including the time, the longitudinal length, the transverse length, the water depth, the flow velocities in x- and y-directions, the bed shear stresses in x- and y-directions, the bed shear velocity, the Manning's roughness coefficient, the kinematic viscosity of the fluid, the eddy viscosity, the turbulent kinetic energy, the turbulent dissipation, and the production and the source terms in the k-ε model. By the numerical simulations, it is shown that the IBVP of depth-averaged 2D hydrodynamic flow process in a prototype domain can be self-similar with that of a scaled domain. In fact, by changing the scaling parameter and the scaling exponents of the length dimensions, one can obtain several different scaled domains. The proposed scaling relations obtained by the Lie group scaling approach may provide additional spatial, temporal, and economical flexibility in setting up physical hydraulic models in which two-dimensional flow components are important.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.