Abstract
In this paper we investigate the dynamics of front propagation in the family of reactions (nA + mB (k)→ C) with initially segregated reactants in one dimension using hyperbolic reaction-diffusion equations with the mean-field approximation for the reaction rate. This leads to different dynamics than those predicted by their parabolic counterpart. Using perturbation techniques, we focus on the initial and intermediate temporal behavior of the center and width of the front and derive the different time scaling exponents. While the solution of the parabolic system yields a short time scaling as t(1/2) for the front center, width, and global reaction rate, the hyperbolic system exhibits linear scaling for those quantities. Moreover, those scaling laws are shown to be independent of the stoichiometric coefficients n and m. The perturbation results are compared with the full numerical solutions of the hyperbolic equations. The crossover time at which the hyperbolic regime crosses over to the parabolic regime is also studied. Conditions for static and moving fronts are also derived and numerically validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.