Abstract

In this study 2d two phase microstructures closely resembling the experimentally captured micrographs of the interpenetrating phase composites are generated using a Gaussian correlation function based method. The scale dependent bounds on the effective thermal conductivity of such microstructures are then studied using Hill-Mandel boundary conditions. A scaling function is formulated to describe the transition from statistical volume element (SVE) to representative volume element (RVE), as a function of the mesoscale δ, the correlation length of the Gaussian correlation function λ, the volume fraction v, and the contrast k between the phases. The scaling function is determined through fitting the data from extensive simulations conducted over the parameter space. The scaling function shows that SVE approaches RVE as (δ/λ)−1.16. A material scaling diagram allows estimation of the RVE size, to within a chosen accuracy, of a given microstructure characterized by the correlation length of the Gaussian correlation function, contrast, and volume fraction of the phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call