Abstract

Steam generator passive heat removal system (SG-PHRS) is used as a passively safe mode to provide decay heat removal in some advanced pressurized water reactors. Due to the structure characteristics of steam generator (SG), there are two natural circulation loops coupling in SG-PHRS in case of a safety-related event. The existing natural circulation scaling criteria could be used to simulate the natural circulation inside SG. Two-phase natural circulation loop is studied carefully, and the dominant effects of SG on behaviors of natural circulation in passive heat removal system are presented. Based on the understanding of SG-PHRS operation, system pressure transient scaling and two-phase natural circulation scaling are analyzed by establishing the relevant continuity, integral momentum and energy equations in one-dimensional area-averaged forms. With modified equations, similarity criteria for SG-PHRS are obtained for engineering application. In addition, equal height simulation and reduced height simulation are studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call