Abstract

Measurement scale of soil water retention parameters is often different from the application scale. Knowledge of scaling property of soil hydraulic parameters is important because scaling allows information to be transferred from one scale to another. The objective of this study is to examine whether these parameters have fractal scaling properties in a cultivated agricultural soil in China. Undisturbed soil samples (128) were collected from a 640-m transect at Fuxin, China. Soil water retention curve and soil physical properties were measured from each sample, and residual water content (θr), saturated soil water content (θs), and parameters αvG and n of the van Genuchten water retention function were determined by curve-fitting. In addition, multiple scale variability was evaluated through multifractal analyses. Mass probability distribution of all properties was related to the support scale in a power law manner. Some properties such as sand content, silt content, θs, and n had mono-fractal scaling behaviour, indicating that, whether for high or low data values, they can be upscaled from small-scale measurements to large-scale applications using the measured data. The spatial distribution of organic carbon content had typically multifractal scaling property, and other properties – clay content, θr, and αvG – showed a weakly multifractal distribution. The upscaling or downscaling of multifractal distribution was more complex than that of monofractal distribution. It also suggested that distinguishing mono-fractals and multifractals is important for understanding the underlying processes, for simulation and for spatial interpolation of soil water retention characteristics and physical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call