Abstract

This paper presents a detailed scaling analysis of the power supply distribution network voltage drop in DSM technologies. The effects of chip temperature, electromigration and interconnect technology scaling (including resistivity increase of Cu interconnects due to electron surface scattering and finite barrier thickness) are taken into consideration during this analysis. It is shown that the voltage drop effect in the power/ground (P/G) distribution network increases rapidly with technology scaling, and that using well-known countermeasures such as wire-sizing and/or decoupling capacitor insertion which are typically used in the present design methodologies may be insufficient to limit the voltage fluctuations over the power grid for future technologies. It is also shown that such voltage drops on power supply lines of switching devices in a clock distribution network can introduce significant amount of skew which in turn degrades the signal integrity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call