Abstract
Biobased and biodegradable polyhydroxyalkanoates (PHAs) are promising alternatives to common plastics. Due to their high production costs, only a minimal share of global plastic production is composed of PHA. A major contributor to the high costs minimizing the potential to occupy a larger market share is the downstream process. To obtain high recovery yields and pure products, most approaches rely on large amounts of solvents. While short-chain-length PHA (scl-PHA) is poorly soluble in nonhalogenated solvents, medium-chain-length PHA (mcl-PHA) was shown to be soluble in nonhalogenated solvents. In this study, an approach to recover poly(hydroxybutyrate-co-hydroxyhexanoate) with acetone and 2-propanol was scaled up 30-fold to 300 g of lyophilized cells per recovery cycle. High PHA purities of 90–100 % were reached from extractions at moderate temperatures from 30–58 °C. In two-stage extractions, up to 100 % PHA was recovered, while the molecular weight was not reduced. Solvents were recovered by distillation in a concentration step and after precipitation. Furthermore, the material properties were analyzed. PHA recovered from the distillation bottom had an increased HHx content compared to the first and second extractions using recovered solvents and was of low purity, indicating efficient and pure precipitation of the recovered PHA during the 2-stage extractions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.