Abstract

In this note, we present a new method for the numerical integration of one dimensional linear acoustics with long time steps. It is based on a scale-wise decomposition of the data using standard multigrid ideas and a scale-dependent blending of basic time integrators with different principal features. This enables us to accurately compute balanced solutions with slowly varying short-wave source terms. At the same time, the method effectively filters freely propagating compressible short-wave modes. The selection of the basic time integrators is guided by their discrete-dispersion relation. Furthermore, the ability of the schemes to reproduce balanced solutions is shortly investigated. The method is meant to be used in semi-implicit finite volume methods for weakly compressible flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.