Abstract

The roughness of cell membrane is a very interesting indicator of cell's health state. Atomic Force Microscopy allows us to investigate the roughness of cell membrane in great detail, but the obtained roughness value is scale-dependent, i.e. it strongly depends on measurement parameters, as scanning area and step size. The scale-dependence of the roughness value can be reduced by means of data filtration techniques, that are not standardized at nanometric scale, especially as far as biological data are concerned. In this work, a new method, based on the changes of values of some roughness parameter (root mean square roughness and skewness) as a function of filtration frequencies, has been implemented to optimize data filtering procedure in the calculation of cell membrane roughness. In this way, a root mean square roughness value independent of cell shape, membrane micro-irregularities and measurement parameters can be obtained. Moreover, different filtration frequencies selected with this method allow us to discriminate different surface regimes (nominal form, waviness and roughness) belonging to the raw cell profile, each one related to different features of the cell surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.