Abstract

Fine-tuning of pretrained convolutional neural networks (CNNs) has been proven to be an effective strategy for remote sensing image scene classification, particularly when a limited number of labeled data sets are available for training purposes. However, such a fine-tuning process often needs that the input images are resized into a fixed size to generate input vectors of the size required by fully connected layers (FCLs) in the pretrained CNN model. Such a resizing process often discards key information in the scenes and thus deteriorates the classification performance. To address this issue, in this paper, we introduce a scale-free CNN (SF-CNN) for remote sensing scene classification. Specifically, the FCLs in the CNN model are first converted into convolutional layers, which not only allow the input images to be of arbitrary sizes but also retain the ability to extract discriminative features using a traditional sliding-window-based strategy. Then, a global average pooling (GAP) layer is added after the final convolutional layer so that input images of arbitrary size can be mapped to feature maps of uniform size. Finally, we utilize the resulting feature maps to create a new FCL that is fed to a softmax layer for final classification. Our experimental results conducted using several real data sets demonstrate the superiority of the proposed SF-CNN method over several well-known classification methods, including pretrained CNN-based ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call