Abstract

AbstractWe investigate the performances and collective task-solving capabilities of complex networks of automata using the density problem as a typical case. We show by computer simulations that evolved Watts–Strogatz small-world networks have superior performance with respect to scale-free graphs of the Albert–Barabási type. Besides, Watts–Strogatz networks are much more robust in the face of transient uniformly random perturbations. This result differs from information diffusion on scale-free networks, where random faults are highly tolerated.KeywordsCellular AutomatonRandom GraphSmall WorldAverage Path LengthRandom FaultThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call