Abstract

<p>Groundwater level dynamics are very sensitive to groundwater withdrawal, but their effects and magnitude – especially in combination with natural fluctuations – must be often estimated due to missing or inaccurate information of all local pumping activities in an area. This study examines the potential of deep learning applications at large spatial scales to estimate the parts of local withdrawal activities and natural impacts – meteorological and environmental – on groundwater level dynamics. We will use big data elements from a newly constructed global groundwater database in a single long-term short-term memory (LSTM) model to examine scale-dependent impacts. The data used in the model consists of continuous groundwater level observations and catchment attributes – spatially heterogeneous but temporally static catchment attributes (e.g. topography) and continuous observations of the meteorological forcing (e.g. precipitation) – from several hundred catchments of shallow coastal aquifers of different continents. Our approach is to use only freely accessible data sources covering the global scale as catchment attributes. We will test how relationships between groundwater level dynamics and catchment attributes, at different scales, can improve interpretability of groundwater level simulations using deep learning techniques.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.