Abstract

In the past decade wind energy installations have increased exponentially driven by reducing cost from technology innovation and favorable governmental policy. Modern wind turbines are highly efficient, capturing close to the theoretical limit of energy available in the rotor diameter. Therefore, to continue to reduce the cost of wind energy through technology innovation a broadening of scope from individual wind turbines to the complex interaction within a wind farm is needed. Some estimates show that 10 40% of wind energy is lost within a wind farm due to underperformance and turbine-turbine interaction. The US Department of Energy has recently announced an initiative to reshape the national research focus around this priority. DOE, in recognizing a testing facility gap, has commissioned Sandia National Laboratories with the design, construction and operation of a facility to perform research in turbine-turbine interaction and wind plant underperformance. Completed in 2013, the DOE/SNL Scaled Wind Farm Technology Facility has been constructed to perform early-stage high-risk cost-efficient testing and development in the areas of turbine-turbine interaction, wind plant underperformance, wind plant control, advanced rotors, and fundamental studies in aero-elasticity, aero-acoustics and aerodynamics. This paper will cover unique aspects of the construction of the facility to support these objectives, testing performed to create a validated model, and an overview of research projects that will use the facility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call