Abstract

Upatinib, a Janus kinase inhibitor drug, was developed by a biotech company to treat immune diseases. The compound tert-butyl (5-toluenesulfonyl-5h-pyrrole [2,3-b] pyrazine-2-yl) carbamate (ACT051-3) is an important intermediate of Upatinib. To date, the steady industrial production of this intermediate compound (ACT051-3) has not been reported. In this study, we described the specific synthesis method and process of the compound ACT051-3 in terms of laboratory synthesis, pilot scale-up, and industrial production. During the exploration of the process route for ACT051-3, many appropriate adjustments and improvements were made to the reaction conditions, finally leading to the successful development of the optimal industrial production process for ACT051-3. The reaction time was nearly doubled by changing the state of the potassium carbonate involved in the reaction, which greatly improved the reaction efficiency. Additionally, by introducing N,N-diisopropylethylamine (DIPEA) to the reaction, the amount of the expensive catalyst Pd(OAc)2 was reduced 2.5-fold, significantly lowering production costs, confirming the feasibility of this process route and the industrial production of ACT051-3, and satisfying market demand for this important intermediate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call