Abstract

This paper enhances the conventional scaled selection combiner (SSC) for decode-and-forward (DF) relay networks using adaptive M-ary quadrature amplitude modulation (M-QAM) to improve the spectral efficiency. Compared with the conventional SSC designed for the combining of identically distributed diversity branches using the same modulation level, the improved SSC allows all diversity branches to choose different modulation levels according to the dissimilar channel conditions. Different scale factors are used for all diversity branches to reflect not only the performance degradation caused by possible erroneous relaying but also different error-resistance abilities of different levels QAM. We derive the bit-error-rate (BER) expressions for DF relay networks using SSC in a recursive way, with all channels conforming to independently and non-identically distributed (i.ni.d.) Rayleigh fading. Newton’s method is employed to obtain the numerical solutions of the optimal scale factors minimizing the BER, and the approximations of the optimal scale factors are derived in closed form for high SNRs. Theoretical analysis and simulation results show that the improved SSC can effectively combine diversity branches with different modulation levels, and for a DF cooperative network with N relay nodes, SSC achieves the full diversity gain of N+1 if for each branch its source-to-relay SNR is proportional to the (N+1)th power of its relay-to-destination SNR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.