Abstract

Trust-region algorithms solve a trust-region subproblem at each iteration. Among the methods solving the subproblem, the optimal path algorithm obtains the solution to the subproblem in full-dimensional space by using the eigenvalues and eigenvectors of the system. Although the idea is attractive, the existing optimal path method seems impractical because, in addition to factorization, it requires either the calculation of the full eigensystem of a matrix or repeated factorizations of matrices at each iteration. In this paper, we propose a scaled optimal path trust-region algorithm. The algorithm finds a solution of the subproblem in full-dimensional space by just one Bunch–Parlett factorization for symmetric matrices at each iteration and by using the resulting unit lower triangular factor to scale the variables in the problem. A scaled optimal path can then be formed easily. The algorithm has good convergence properties under commonly used conditions. Computational results for small-scale and large-scale optimization problems are presented which show that the algorithm is robust and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.