Abstract
In many research fields, statistical probability models are often used to analyze real-world data. However, data from many fields, such as the environment, economics, and health care, do not necessarily fit traditional models. New empirical models need to be developed to improve the fit. In this study, we investigated a further extension of the quasi-Lindley model. This extension was asymmetrically distributed on the positive real number line. Maximum likelihood, least square error, Anderson–Darling, and expectation maximization algorithms were used to estimate the parameters studied. All techniques provided accurate and reliable estimates of the parameters. However, the mean square error of the expectation-maximization approach was lower. The usefulness of the proposed model was demonstrated by analyzing a reliability data set, and the analysis showed that it outperformed all other alternative models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.